Some Comparing lemmas in analysis (epsilon delta language)
lemma of "less than"
Content:
\(x, y \in \Bbb{R}\), \(\forall \epsilon \gt 0\), \(x \lt y + \epsilon\), then \(x \leq y\)
Proof

lemma of "Equal"
Content:
\(x, y \in \Bbb{R}\), \(\forall \epsilon \gt 0\), \(x = y + \epsilon\), then \(x = y\)
Proof

Some Comparing lemmas in analysis (epsilon delta language)
http://blog.slray.com/2023/12/18/Some-Comparing-lemmas-in-analysis-epsilon-delta-language/