convergence of sum of sin(aknx)/n
The prove
The convergence of the sum of \(\sum_{n=1}^{\infty} \frac{sin(anx)}{x}\)


Conclusion
Thus, we conclude that
\[ \sum_{n=1}^{\infty} \frac{sin(anx)}{x} \]
- Pointwise convergent (only) on open interval \(\left(0, 2\pi\right)\);
- Uniformly convergent on any close sub interval of \(\left(0, 2\pi\right)\).
- The series on the other hand converges for every \(x\).
More information about the theroem
More information can be found:
- Math.stackexchagne:
- Related YouTube Videos:
- A Chinese Video Platform:
- A Chinese text forum:
- Related Theroems:
- Similar Questions:
convergence of sum of sin(aknx)/n
http://blog.slray.com/2023/12/17/convergence-of-sum-of-sin-aknx-n/